1 | Ukraine | 3.96% | |
2 | South | 3.96% | |
3 | Korea | 2.97% | |
4 | Russia | 2.97% | |
5 | Tiananmen | 2.97% | |
6 | US-China | 1.98% | |
7 | Korea’s | 1.98% | |
8 | New | 1.98% | |
9 | Lee | 1.98% | |
10 | America | 1.98% | |
11 | Will | 1.98% | |
12 | China | 1.98% | |
13 | Jae-myung | 1.98% | |
14 | Trump’s | 1.98% | |
15 | June | 0.99% | |
16 | Votes | 0.99% | |
17 | anti-China | 0.99% | |
18 | Trees | 0.99% | |
19 | Taiwan’s | 0.99% | |
20 | Begin | 0.99% | |
21 | PM | 0.99% | |
22 | Indonesia | 0.99% | |
23 | Europe | 0.99% | |
24 | Interview | 0.99% | |
25 | Dwindling | 0.99% | |
26 | Danantara | 0.99% | |
27 | Korea? | 0.99% | |
28 | Smuggling | 0.99% | |
29 | Shigeo | 0.99% | |
30 | Middle | 0.99% | |
31 | Ancient | 0.99% | |
32 | Fungus | 0.99% | |
33 | Lebanon | 0.99% | |
34 | Icon | 0.99% | |
35 | Wild | 0.99% | |
36 | Ground | 0.99% | |
37 | India | 0.99% | |
38 | Mother | 0.99% | |
39 | Air | 0.99% | |
40 | Thailand | 0.99% | |
41 | Bengaluru | 0.99% | |
42 | Tibetans | 0.99% | |
43 | North | 0.99% | |
44 | Frohnmaier | 0.99% | |
45 | Tuesday | 0.99% | |
46 | VietJet | 0.99% | |
47 | TikTok | 0.99% | |
48 | Voting | 0.99% | |
49 | Koreans | 0.99% | |
50 | Malaysia | 0.99% | |
는 분류, 데이터 기준으로 의 기사에서 의 고유명사 데이터를 통해 생성되었습니다.
|