1 | PM | 4.69% | |
2 | Cox | 4.69% | |
3 | Greens | 3.13% | |
4 | Boulder | 3.13% | |
5 | Labor | 3.13% | |
6 | US | 3.13% | |
7 | Ashes | 1.56% | |
8 | Rome | 1.56% | |
9 | Tanenhaus | 1.56% | |
10 | Suspect | 1.56% | |
11 | Macron | 1.56% | |
12 | Brief | 1.56% | |
13 | Foreign | 1.56% | |
14 | Poland’s | 1.56% | |
15 | Minimum | 1.56% | |
16 | Warns | 1.56% | |
17 | Dutch | 1.56% | |
18 | Dialogue | 1.56% | |
19 | un-Solidarity | 1.56% | |
20 | National | 1.56% | |
21 | FM | 1.56% | |
22 | Run | 1.56% | |
23 | Corp | 1.56% | |
24 | Europe | 1.56% | |
25 | Waters | 1.56% | |
26 | Review | 1.56% | |
27 | Colorado | 1.56% | |
28 | Slams | 1.56% | |
29 | Budget | 1.56% | |
30 | Officials | 1.56% | |
31 | ‘Buckley’ | 1.56% | |
32 | NGOs | 1.56% | |
33 | Willing’ | 1.56% | |
34 | Dorinda | 1.56% | |
35 | Election | 1.56% | |
36 | Prabowo | 1.56% | |
37 | Corrupt | 1.56% | |
38 | Sesame | 1.56% | |
39 | Sam | 1.56% | |
40 | Indonesian | 1.56% | |
41 | China | 1.56% | |
42 | Italy’s | 1.56% | |
43 | Book | 1.56% | |
44 | Bucharest | 1.56% | |
45 | Know | 1.56% | |
46 | Senator | 1.56% | |
47 | Chinese | 1.56% | |
48 | Labour | 1.56% | |
49 | Larissa | 1.56% | |
50 | News | 1.56% | |
는 분류, 데이터 기준으로 의 기사에서 의 고유명사 데이터를 통해 생성되었습니다.
|